By ΠΠ»ΡΠΈΠΌΡΠ΅Π² ΠΠ»Π΅ΠΊΡΠ°Π½Π΄Ρ ΠΠΈΠΊΠΎΠ»Π°Π΅Π²ΠΈΡ
ΠΠ»ΡΠΈΠΌΡΠ΅Π² ΠΠ»Π΅ΠΊΡΠ°Π½Π΄Ρ ΠΠΈΠΊΠΎΠ»Π°Π΅Π²ΠΈΡ, 2022
Π Π΄Π°Π½Π½ΠΎΠΌ ΡΡΠ΅Π±Π½ΠΎΠΌ ΠΏΠΎΡΠΎΠ±ΠΈΠΈ ΡΠ°ΡΡΠΌΠ°ΡΡΠΈΠ²Π°ΡΡΡΡ ΠΊΠ°ΠΊ ΠΊΠ»Π°ΡΡΠΈΡΠ΅ΡΠΊΠΈΠ΅, ΡΠ°ΠΊ ΠΈ ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΡΠ΅ Π°Π»Π³ΠΎΡΠΈΡΠΌΡ ΠΌΠ°ΡΠΈΠ½Π½ΠΎΠ³ΠΎ ΠΎΠ±ΡΡΠ΅Π½ΠΈΡ Π΄Π»Ρ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° Π°Π³Π΅Π½ΡΠΎΠ². ΠΠ΅ΡΠΎΠ΄Ρ ΠΎΡΠ½ΠΎΠ²Π°Π½Ρ Π½Π° ΡΠ΅ΠΎΡΠΈΠΈ ΠΈΠ³Ρ, ΡΠ°Π±Π»ΠΈΡΠ½ΡΡ , Π½Π΅ΠΉΡΠΎΡΠ΅ΡΠ΅Π²ΡΡ , ΡΠ²ΠΎΠ»ΡΡΠΈΠΎΠ½Π½ΡΡ ΠΈ ΡΠΎΠ΅Π²ΡΡ ΡΠ΅Ρ Π½ΠΎΠ»ΠΎΠ³ΠΈΡΡ . Π’Π΅ΠΎΡΠ΅ΡΠΈΡΠ΅ΡΠΊΠ°Ρ ΠΌΠΎΠ΄Π΅Π»Ρ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ ΡΠ°Π·Π²ΠΈΠ²Π°Π΅ΡΡΡ, ΠΎΠΏΠΈΡΠ°ΡΡΡ Π½Π° ΠΌΠ°ΡΠΊΠΎΠ²ΡΠΊΠΈΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΡ ΠΏΡΠΈΠ½ΡΡΠΈΡ ΡΠ΅ΡΠ΅Π½ΠΈΠΉ. Π Π΅Π°Π»ΠΈΠ·Π°ΡΠΈΡ Π°Π»Π³ΠΎΡΠΈΡΠΌΠΎΠ² Π²ΡΠΏΠΎΠ»Π½Π΅Π½Π° Π½Π° ΡΠ·ΡΠΊΠ΅ Python Ρ ΠΈΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ Π±ΠΈΠ±Π»ΠΈΠΎΡΠ΅ΠΊΠΈ PyTorch.
Alexander Nikolaevich Alfimtsev, 2022
This tutorial covers classic and modern algorithms for multi-agent machine learning, drawing from game theory, tabular, neural network, evolutionary, and swarm technologies. The theoretical model of the algorithms is developed sequentially, based on Markov decision processes. Algorithm implementation is performed in Python using the PyTorch deep learning library. The machine learning environment is the computer game StarCraft II, utilizing the SMAC cooperative multi-agent learning interface.